

SAINIK SCHOOL, AMARAVATHINAGAR

IX

HOLIDAY HOMEWORK: 2019 – 2020

Class: IX Subject: MATHEMATICS

S. NO	TOPIC	ACTIVITY / PROJECT	TIME PERIOD	SKILL ENHANCED / LEARNING OUT COMES	ANNEXURE NO
1	Number Systems	Problem solving	10 hrs	Knowledge, understanding	A
2	Polynomials	Problem solving	8 hrs	Knowledge, understanding	В
3	Coordinate Geometry & Linear Equations	Problem solving	12 hrs	Knowledge, understanding	С
4	Algebra / Geometry	Chart making	8 hrs	Understanding, creative expression, presentation	D
5	Project	crossword puzzle	5 hrs	Understanding, creative expression, presentation	E

Annexure:

A. Number Systems - Problem solving

- 18 Qns

B. Polynomials - Problem solving

- 15 Qns

C. Coordinate Geometry & Linear Equations - Problem solving - 17 Qns

D. Chart making

E. Project

<u>Teacher's Name</u>: Mr. Maria Joseph Raja a <u>Signature</u>

Recommended By Approved By

<u>Vice Principal</u> <u>Principal</u>

1. NUMBER SYSTEMS

- 1) Insert 6 rational numbers between ½ and ¾.
- 2) Show that $\frac{x^{-1} + y^{-1}}{x^{-1}} + \frac{x^{-1} y^{-1}}{y^{-1}} = \frac{x^2 + y^2}{xy}$
- 3) Simplify: $\frac{16 \times 2^{n+1} 4 \times 2^n}{16 \times 2^{n+2} 2 \times 2^{n+2}}.$
- 4) If $a = \frac{2 \sqrt{5}}{2 + \sqrt{5}}$ and $b = \frac{2 + \sqrt{5}}{2 \sqrt{5}}$, then find $a^2 b^2$.
- 5) Simplify: $(i)\left(\frac{1}{3}\right)^7$
- (ii) $13^{\frac{1}{5}}$. $17^{\frac{1}{5}}$
- 6) If $\frac{3+\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$, find the values of aandb.
- 7) If $x^{\frac{a}{b}}=1$, then find the value of a'.
- 8) Represent $\sqrt{3.5}$ on the number line.
- 9) Express the following in the form $\frac{p}{q}$: a) $0.\overline{6}$ b) $0.4\overline{7}$ c) $0.2\overline{35}$
- 10) Write in the form of decimal and what kind of decimal: a) $\frac{36}{100}$ b) $\frac{1}{11}$
- 11) If $x = 7 + \sqrt{40}$, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$
- 12) Insert four irrational numbers between $3\sqrt{2}$ and $2\sqrt{3}$.
- 13) Arrange the following in ascending order: $\sqrt{3}$, $\sqrt[4]{8}$
- 14) Evaluate using suitable identity: (i) 108³ (ii) 103 x 107
- 15) Simplify: $(i)7^{\frac{1}{2}}.8^{\frac{1}{2}}$ $(ii)2^{\frac{2}{3}}.2^{\frac{1}{5}}$ $(iii)(\frac{1}{3^3})^7$ $(iv) 13^{\frac{1}{5}}.17^{\frac{1}{5}}$
- 16) Rationalize the denominators of the following: a) $\frac{1}{\sqrt{7}-\sqrt{6}}$ b) $\frac{1}{\sqrt{7}-2}$
- 17) If a and b are two rational numbers such that, $\frac{(3+2\sqrt{3})}{(3-2\sqrt{3})} = a + b\sqrt{3}$, find the values of a and b
- 18) If a and b are rational numbers and $\frac{\sqrt{2}+2\sqrt{3}}{2\sqrt{2}+\sqrt{3}}=a+b\sqrt{6}$, find the values of a and b.

2. POLYNOMIALS

ANNEXURE - B

- 1) Find p(0), p(1) and p(2) for the polynomial $p(t) = 2 + t + 2t^2 t^3$
- 2) Factories:
- (i) $12x^2 7x + 1$
- (ii) $2x^3-3x^2-17x+30$
- 3) Without actual division, prove that $(2x^4-6x^3+3x-2)$ is exactly divisible by (x^2+3x+2)
- 4) Find the value of k is the polynomial $2x^4+3x^3+2kx^2+3x+6$ exactly divisible by (x+2)?

- 5) If $x^2 + \frac{1}{x^2} = 7$, find the value of $x^3 + \frac{1}{x^3}$.
- 6) If $\left(x + \frac{1}{x}\right) = 9$, then find the value of $\left(x^3 + \frac{1}{x^3}\right)$.
- 7) Show that 2 and $-\frac{1}{3}$ are the zeroes of the polynomial $3x^3 2x^2 7x 2$. Also find the third zero of the polynomial.
- 8) Simplify: $(a + b + c)^2 (a b c)^2$
- 9) Factorise the polynomial: $8x^3 (2x y)^3$
- 10) If (a + b + c) = 14, and $(a^2 + b^2 + c^2) = 74$, find the value of (ab + bc + ca).
- 11) Using factor theorem, factorize the polynomial $x^3 6x + 11x 6$.
- 12) If $x^2 1$ is a factor of $ax^4 + bx^3 + cx^2 + dx + e$, then show that a + b + e = c + d = 0.
- 13) What is the coefficient of x in the expansion of $(x+3)^3$?
- 14) If a, b, c are all non-zero and a+b+c=0, prove that $\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=3$
- 15) Using factor theorem, factorize the polynomial $x^3 6x + 11x 6$.

3. COORDINATE GEOMETRY & LINEAR EQUATIONS

ANNEXURE - C

- 1) Three vertices of a rectangle are (3,2), (-4,2) and (-4,5).

 Plot these points and find the coordinates of the fourth vertex.
- 2) Draw the graph of two lines whose equations are x + y 6 = 0 and x y 2 = 0, on the same graph paper. Find the area of triangle formed by the two lines and y axis.
- 3) Find three solutions of 5x y + 6 = 0 after reducing it to y = mx + c form.
- 4) Draw the graph of the equation 2x + 3y 6 = 0.
 - (i) Using graph paper determine whether x = 3 and y = 0 is a solution.
 - (ii) Find the value of y, if x = -3 and
 - (iii) Find the value of x, if y = -2 from the graph and verify
- 5) Find the solution of the linear equation 2x + 5y = 10 which represents a point on
 - (i) x-axis (ii) y-axis
- 6) 4 years before, age of a mother was 3 times the age of her daughter.

 Write a linear equation to represent this situation and draw its graph.
- 7) For what value of p, the linear equation 2x + py = 8 has equal values of x and y for its solution?
- 8) Frame a linear equation in the form ax + by + c = 0 by using the given values of a, b and c.
 - (i) a = -2, b = 3, c = 4
- (ii) a = 5, b = 0, c = -1
- 9) In which quadrant or on axis do each of the points (-2, 4), (3, -1), (-1, 0), (1, 2) and (-3, -5) lie? Verify your answer by locating them on the Cartesian plane.
- 10) Plot the points A(1, 2), B(-4, 2), C(-4, -1), D(1, -1). What kind of quadrilateral is ABCD? Also find the area of the quadrilateral ABCD.

- 11) Plot the following points and check whether they are collinear or not:
 - (i) (1, 3), (-1, -1), and (-2, -3)
 - (ii) (1,2), (2, -1), and (-1, 4)
- 12) Find the points where the graph of the equation 3x + 4y = 12 cuts the x-axis and the y-axis.
- 13) How many solution (s) of equation 2x + 1 = x 3 are there :
 - (a) on number line?
- (b) in Cartesian plane?
- 14) After 5 years, the age of father will be two times the age of son.Write a linear equation in twovariables to represent this statement.
- 15) Express y in terms of x from the equation 3x + 2y = 8 and check whether the point (4, -2) lies onthe line.

OOL AMARALA

- 16) Express 3x = 5y in the form of ax + by + c = 0 and hence indicate the values of a, b and c.
- 17) If the point (-1, -5) lies on the graph of 3x = ay + 7, then find the value of a.

CHART MAKING (ANY ONE OF THE FOLLOWING)

ANNEXURE - D

- 1) Identities of Algebraic Expressions.
- 2) Laws of exponents.
- 3) Classification of triangles according to sides and angles.
- 4) Types of quadrilaterals with figures.
- 5) Classification of angles with figures and definitions.
- 6) Indian Mathematicians and their contributions.
- 7) Values of Mathematics in life.
- 8) History of number π

ANNEXURE – E

PROJECT

1) Frame a crossword puzzle based on geometrical terms.